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Solution 6

1. Let Ck[a, b] be the normed space consisting of all k-many times continuously differentiable
functions under the norm

‖f‖k =

k∑
j=0

‖f (j)‖∞ .

Show that

ρ(f, g) =
∞∑
j=0

1

2j
‖f − g‖j

1 + ‖f − g‖j
,

defines a metric on C∞[a, b], the space of smooth functions.

Solution. Done in class.

2. Let H be the collection of all closed, bounded nonempty sets in a metric space (X, d). For
A,B ∈ H, define

ρ(A,B) = sup{d(a,B) : a ∈ A},

where
d(a,B) = inf{d(a, b) : b ∈ B}.

(a) Show that ρ(A,B) = 0 if and only if A ⊂ B.

(b) Show that ρ(A,B) ≤ ρ(A,C) + ρ(C,B) ,∀A,B,C ∈ H .

(c) Verify that dH(A,B) ≡ max{ρ(A,B), ρ(B,A)} defines a metric on H. (It is called
the Hausdorff metric.)

Solution. I only provide the proof of (b). For a ∈ A, d(a, b) ≤ d(a, c) + d(c, b) ,∀b, c.
Given ε > 0, there is some c′ ∈ C such that d(a, c′) ≤ d(a,C) + ε. So d(a,B) ≤ d(a, b) ≤
d(a,C) + ε + d(c′, B) ≤ d(a,C) + ε + ρ(C,B) ≤ ρ(A,C) + ε + ρ(C,B) . Taking sup over
a ∈ A, we finally get ρ(A,B) ≤ ρ(A,C) + ε+ ρ(C,B) . Now the triangle inequality comes
from letting ε→ 0.

3. Determine whether Z and Q are complete sets in R.

Solution. Z is a closed subset so it is complete. On the other hand, the closure of Q is
R, it is not complete.

4. Does the collection of all differentiable functions on [a, b] form a complete set in C[a, b] ?

Solution. No. Since C[a, b] is complete, it suffices to show that the set of differentiable
functions is not closed. But this is easy, I leave you to verify the sequence of differentiable
functions fn(x) = (1/n + x2)1/2 in C[−1, 1] converges uniformly to the non-differentiable
function f(x) = |x|.

5. Let (X, d) be a metric space and Cb(X) the vector space of all bounded, continuous
functions in X. Show that it forms a complete metric space under the sup-norm. This
problem will be used in the next problem.

Solution. Let {fn} be a Cauchy sequence in Cb(X). For ε > 0, there exists n1 such that

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε, ∀x ∈ X. (1)
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It shows that {fn(x)} is a numerical Cauchy sequence, so limn→∞ fn(x) exists. We define
f(x) = limn→∞ fn(x). We check it is continuous at x0 as follows. By passing m → ∞ in
(1), we have

|f(x)−f(x0)| ≤ |f(x)−fn1(x)|+|fn1(x)−fn1(x0)|+|fn1(x0)−f(x0)| ≤ 2ε+|fn1(x)−fn1(x0)|.

As fn1 is continuous, there is some δ such that |fn1(x) − fn1(x0)| < ε for x ∈ Bδ(x0). It
follows that we |f(x)− f(x0)| < 3ε for x ∈ Bδ(x0), so f is continuous at x0. Now, letting
m→∞ in (1), we get |fn(x)−f(x)| ≤ ε for all n ≥ n1, so fn → f uniformly. In particular,
it means f is bounded.

6. We define a metric on N, the set of all natural numbers by setting

d(n,m) =

∣∣∣∣ 1n − 1

m

∣∣∣∣ .
(a) Show that it is not a complete metric.

(b) Describe how to make it complete by adding one new point.

Solution. The sequence {n} is a Cauchy sequence in this metric but it has no limit. Its
completion is obtained by adding an ideal point called∞ and define d̃(x, y) = d(x, y) when
x, y ∈ N and d̃(x,∞) = 1/x for all x ∈ N and d̃(∞,∞) = 0.

7. Let (X, d) be a metric space. Fixing a point p ∈ X, for each x define a function

fx(z) = d(z, x)− d(z, p).

(a) Show that each fx is a bounded, uniformly continuous function in X.

(b) Show that the map x 7→ fx is an isometric embedding of (X, d) to Cb(X) (shorthand
for Cb(X,R)) . In other words,

‖fx − fy‖∞ = d(x, y), ∀x, y ∈ X.

(c) Deduce from (b) the completion theorem.

This approach is much shorter than the proof given in notes. However, it is not so inspiring.

Solution.

(a) From |fx(z)| = |d(z, x) − d(z, p)| ≤ d(x, p), and from |fx(z) − fx(z′)| ≤ |d(z, x) −
d(z′, x)|+ |d(z′, p)−d(z, p)| ≤ 2d(z, z′), it follows that each fx is a bounded, uniformly
continuous function in X.

(b) |fx(z)− fy(z)| = |d(z, x)− d(z, y)| ≤ d(x, y), and equality holds taking z = x. Hence

‖fx − fy‖∞ = d(x, y), ∀x, y ∈ X.

(c) Let Y0 = {fx : x ∈ X} ⊂ Cb(X). Let Y be the closure of Y0 in the complete metric
space (Cb(X), ρ) with sup-norm ρ. Then (Y, ρ) is a completion of (X, d).

8. Let f : E → Y be a uniformly continuous map where E ⊂ X and X,Y are metric spaces.
Suppose that Y is complete. Show that there exists a uniformly continuous map F from
E to Y satisfying F = f in E. In other words, f can be extended to the closure of E
preserving uniform continuity.

Solution. Let x ∈ ∂E. There exists {xn} ⊂ E, xn → x. Since {xn} is a Cauchy sequence,
by uniformly continuity {f(xn)} is also a Cauchy sequence in Y . As Y is complete, {f(xn)}
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converges to some point in Y . Therefore, we can define F (x) = limn→∞ f(xn). It remains
to show this definition is independent of the sequence {xn}. Indeed, let {yn}, yn → x.
We claim limn→∞ f(yn) = limn→∞ f(xn). It suffices to set z2n+1 = xn when n is odd
and z2n = yn to form a new sequence {zn}. This sequence again is a Cauchy sequence,
so {f(zn)} is convergent. As both {xn} and {yn} are subsequences of it, {f(xn)} and
{f(yn)} tend to the same limit. Now, it is clear that the new function F extends f and is
uniformly continuous on the closure of E.

Note. We have used this property in the proof of Theorem 3.4. Observe that a contraction
is always uniformly continuous.


